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0.0.1 Fluorescent signal maths analysis for timelapse images

Intensity signal Is(t) - or pixel value - can be decoupled on two terms: the signal given by the
biological system Ib(t) and the background signal given by the media Im(t).

Is(t) = Ib(t) + Im(t) (1)

It is possible to obtain the background intensity directly from the data and get rid of it by sim-
ple substraction (assuming independence between them), focusing on the intensity given by the
biological system.

Ib(t) = Is(t)− Im(t) (2)

This signal intensity of interest (“I(t)”) is given by the amount of fluorescence produced by
bacteria. Then, it is possible to write the next expresión to represent it.:

I(t) = V (t) · Fv (3)

where V (t) is the volume of bacteria on each space and time point, and Fv is the fluorescence
emited by each unit of volume. As there are not precise measures of the colony volume or its
absorbance at each point, it would be useful to make some simplifications. By assuming an homo-
geneus thickness along the colony (say h), then:

I(t) = V (t) · Fv → I(t) = A(t) · h · FA
h
→ I(t) = A(t) · FA (4)

where A(t) is the area of bacteria on each time point and FA is the amount of fluorescence emited
per unit of area (pixel)

This last term could be assumed as a linear relation with the amount of fluorescent protein on
each unit of area

(
[FP ] = FP

Area , αF = fluorescence produced per unit of [FP]
)
:

FA = aF · [FP ] + b (5)

Then, the following expression is obtained for the intensity:

I(t) = A(t) · FA = A(t) · aF · [FP ] +A(t) · b (6)

where the first term is given by the fluorescent protein amount on each cell and the second term
is the bacterial colony autofluorescence.

Dividing by the area A(t) it’s is possible to obtain an expression for the mean fluorescent in-
tensity per area:

I(t)

A(t)
= aF · [FP ] + b (7)
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By taking the derivative over time, it’s get the expression:

d(I/A)

dt
= aF ·

d[FP ]

dt
(8)

It is possible to relate the above with the dynamics of the colony protein expression. Taking
simple models for transcription and traduction rate, respectively:

d[m]

dt
= Km(t)− δm[m]− µ[m] (9)

d[P ]

dt
= Kp(t) · [m]− δp[P ]− µ[P ] (10)

whereKm(t) andKp(t) are the transcription and traduction rates, δ is the degradation rate and
µ is the growth rate (being the last term the dilution one).

Under the assumptions of d[m]
dt ≈ 0 (and dilution term neglected)→ [m] = Km(t)

δm
, and taking

δp ≈ 0, the protein dynamics becomes:

d[P ]

dt
= Kp(t) ·

Km(t)

δm
− µ[P ] (11)

by grouping the protein expression term, it becomes:

d[P ]

dt
= Ke(t)− µ[P ] (12)

Using this model to represent the fluorescent protein dynamics, it’s possible to use it on the
mean fluorescence intensity expression developed (eq. 8):

d(I/A)

dt
= aF ·

d[FP ]

dt
= aF · (Ke(t)− µ[FP ]) (13)

→ d(I/A)

dt
= KF (t)− µ · aF · [FP ] (14)

where KF = aF ·Ke is the flurescence intensity expression rate.
Finally, rearranging (14) and using (7):

KF (t) =
d(I/A)

dt
+ µ ·

(
I

A
− b

)
(15)

As the colony autofluorescence is negligible it’s possible to write:

KF (t) =
d(I/A)

dt
+ µ ·

(
I

A

)
(16)

To write an expression for the mean intensity signal (I/A) and for the growth rate (µ), it’s
possible to take the bacterial growth expression:

dV (t)

dt
= µ · V (t) (16)

Which under assumption of constant thicknes it gets:

dA(t)

dt
= µ ·A(t) (17)
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→ µ(t) =
1

A(t)
· dA(t)

dt
(18)

by taking a logistic area growth model:

A(t) =
Amax

1 + e−µmax(t−t0)
(19)

µ(t) gets:
µ(t) =

µmax

eµmax(t−t0) + 1
(20)

As we have colony area data, we can fit the model to them and compute µ(t) value. Also with
the area values we can compute I/A directly from the data and smooth them with a spline (using
scipy univariate spline ) to compute the derivative of that function. Then we are able to compute
the KF (t) value on (15).
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https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.interpolate.UnivariateSpline.html
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